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Rotating homogeneous turbulence in a finite domain is studied using numerical
simulations, with a particular emphasis on the interactions between the wave and
zero-frequency modes. Numerical simulations of decaying homogeneous turbulence
subject to a wide range of background rotation rates are presented. The effect of
rotation is examined in two finite periodic domains in order to test the effect of the
size of the computational domain on the results obtained, thereby testing the accurate
sampling of near-resonant interactions. We observe a non-monotonic tendency when
Rossby number Ro is varied from large values to the small-Ro limit, which is robust
to the change of domain size. Three rotation regimes are identified and discussed:
the large-, the intermediate-, and the small-Ro regimes. The intermediate-Ro regime is
characterized by a positive transfer of energy from wave modes to vortices. The three-
dimensional to two-dimensional transfer reaches an initial maximum for Ro~0.2 and
it is associated with a maximum skewness of vertical vorticity in favour of positive vor-
tices. This maximum is also reached at Ro ~0.2. In the intermediate range an overall
reduction of vertical energy transfer is observed. Additional characteristic horizontal
and vertical scales of this particular rotation regime are presented and discussed.

1. Introduction

Rotating frame effects have a crucial influence on large-scale atmospheric and
oceanic flows as well as some astrophysical and engineering flows in bounded domains
(turbine rotor, rotating spacecraft reservoirs or Jupiter’s atmosphere, for example).
The Coriolis force appears only in the linear part of the momentum equations, but
if strong enough, it can radically change the nonlinear dynamics. The strength of the
applied rotation is only appreciable if it is comparable with the nonlinear term. The
Rossby number, Ro=U/282L, is a dimensionless measure of the relative size of these
terms. Here, §2 is the background rotation rate and U and L are characteristic length
and velocity scales, respectively.

When the Coriolis force is applied, inertial waves are solutions of the linear
momentum equations. Their frequencies vary from zero to 2£2 (Greenspan 1968).
The zero-linear-frequency modes correspond to two-dimensional structures (e.g. shear
layers, vortices, etc.), independent of the direction parallel to the rotation axis.

Unlike the rotating-stratified case, the zero-frequency modes in the rotating problem
are not related to a third normal mode of the linear operator. However, it is common
to still refer to these modes as vortical modes as discussed below in §2. In the full
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nonlinear problem, the large range of frequencies of the inertial waves is at the
origin of a complex nonlinear interplay of interactions involving the two-dimensional
structures and the wave modes (e.g. resonant triad interactions, quartets, etc.). The
dynamics of the two-dimensional structures are, however, slow compared to the time
scale of the three-dimensional flow, if Ro is low. This motivated previous work by
Benney & Saffman (1966) and Newell (1969) among others. They employed multiple-
time-scale asymptotic techniques in the strong rotation limit. Newell (1969) showed
that the exact and near-resonant interactions play an important role on a time scale of
O(1/Ro), given that the linear time scale is of O(Ro). In this limit, only the resonant
and the near-resonant triads are thought to make a significant contribution on the
slow time scale, thereby governing the nature of two-dimensional-three-dimensional
interactions in that limit.

In this limit, several modal decompositions can be used. One is the helical mode
decomposition employed by Greenspan (1968), Cambon & Jacquin (1989), Waleffe
(1993), Smith & Waleffe (1999) and Morinishi, Nakabayashi & Ren (2001). Starting
from this or similar decompositions, resonant wave theories have been developed,
leading to the derivation of an averaged equation. For example, Babin, Mahalov &
Nicolaenko (1998) showed that the Navier—Stokes equations can be decomposed
into equations governing a three-dimensional (wave modes) subset, a decoupled two-
dimensional subset (the averaged equation), and a component that behaves as a
passive scalar. Using the resonant wave theory approach, Waleffe (1993) also argued
that nonlinear transfers in rotating turbulence are preferentially towards larger, but
non-vortical (i.e. not zero-frequency or two-dimensional), vertical scales in the strong
rotation limit.

Several experiments in rotating turbulence have been performed, such as those by
McEwan (1969, 1976), Hopfinger, Browand & Gagne (1982), Jacquin et al. (1990),
Baroud et al. (2002) and Morize, Moisy & Rabaud (2005). The experiments showed
an increase of the correlation lengths along the axis of rotation. In other words,
rapid rotation leads to a tendency for two-dimensionalization of an initially isotropic
flow. A predominance of cyclonic over anticyclonic activity and a reduction of energy
decay have also been observed for certain rotation rates (Ro ~ O(1)).

Various numerical simulations have been performed to examine the problem of ro-
tating turbulence, such as the decaying turbulence simulations of Bardina, Ferziger &
Rogallo (1985) and Bartello, Métais & Lesieur (1994). The last was the first to
demonstrate numerically the breaking of the vorticity symmetry for Rossby numbers
of order one in decaying homogeneous turbulence. Note that this preferential
destabilization of anticyclones in rotating flows for a Rossby number of order one
had previously been observed in confined and free shear flows (mixing layers and
plane wakes). Examples are found in Johnson (1963), Rothe & Johnston (1979),
Witt & Joubert (1985), Tritton (1992) and Bidokhti & Tritton (1992). The results
above support the idea of the emergence of a strong anisotropy by the alignment of
the vorticity vector to the rotation axis and the stability of this configuration. They
are a priori consistent with the tendency of the flow to two-dimensionalize, except for
the symmetry breaking, which is not a property of two-dimensional turbulence.

Many studies of forced rotating homogeneous turbulent flow simulations have been
performed, including Yeung & Zhou (1998), Smith & Waleffe (1999) and Chen et al.
(2005). They observed a strong upscale transfer of energy toward larger vertical
scales for low Ro. Unlike the two-dimensional inverse cascade, a k> spectrum was
observed in forced simulations by Smith & Waleffe (1999), where k;, is the horizontal
wavenumber, Which is smaller than that of the forcing. A similar behaviour occurs
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at only the higher of the two Rossby numbers examined in Chen et al. (2005).
The lower-Ro simulation displayed behaviour consistent with a reduction of the
interactions between two-dimensional modes and the rest of the flow. The breaking
of the vorticity symmetry, identified in the decay simulations of Bartello et al. (1994),
also appeared in the forced simulation of Smith & Waleffe (1999). This non-two-
dimensional property is not taken into account in current theories involving resonant
triads. Smith & Lee (2005) found that near-resonant triads have an important role in
the vorticity asymmetry.

The scope of this paper is restricted to flows in bounded domains, with discrete
wavenumbers. The numerical studies in finite and infinite domains are both
idealizations of the rotating flows found in nature and industry. Both approaches
have advantages for and major limitations to direct practical applications. In any
case, if, as has been observed, the integral scale along the rotation axis grows, then
presumably it will eventually fill a large part of the flow domain. When this occurs
further progress in understanding the flow will depend on the precise details of its
geometry. It is therefore worth mentioning the numerous studies of the problem in
unbounded domains (continuous wavenumbers), even if the real flows of interest in
this paper are those found in finite natural or manufactured domains. Such studies
include axisymmetric EDQNM developments on the basis of helical modes two-point
closure found in Cambon & Jacquin (1989) and Cambon, Mansour & Godeferd
(1997). The two-point closure model used in the former showed a positive ‘angular
energy transfer’ toward the zero-frequency spectral plane (i.e. two-dimensional modes),
which is consistent with the weak turbulence analysis, performed in Waleffe (1992)
and Waleffe (1993). In Cambon et al. (1997) numerical simulations of the first-order
decoupling at finite Ro are said to be inconclusive. The unrealistic geometry is said
to lead to a lack of angular resolution of the discrete set of wave vectors.

Following the standard weak turbulence approach (Benney & Newell 1969), several
analytical studies have been performed in which nonlinear interactions govern the
long-time behaviour in various flows (e.g. Caillol & Zeitlin 2000 for the internal
gravity waves, Galtier et al. 2000 for incompressible magnetohydrodynamics, Galtier
2003 and Bellet et al. 2006 for the specific case of inertial waves). Cambon,
Rubinstein & Godeferd’s (2004) extended wave turbulence theory suggested that
two-dimensionalization cannot rigorously be reached even for infinite rotation rates
in continuous and unbounded domains. They demonstrated the presence of new
volume and principal value integrals that maintain the coupling between slow and
rapid modes.

Bellet et al. (2006) aimed to capture the dynamics for asymptotically high rotation
rates, for which resonant interactions are predicted by wave—turbulence theories
to have a dominant contribution to the dynamics. An asymptotic quasi-normal
Markovian (AQNM) model was developed by the authors, investigating the dynamics
of only the resonant inertial wave interactions between three-dimensional modes. In
fact, the AQNM model cannot capture the resonant triads involving zero-frequency
(two-dimensional) modes. An angular energy spectrum is obtained numerically and
it is found that the energy density is large near the perpendicular wave vector plane.
The singularity is found to be integrable as in other wave—turbulence results such as
Galtier (2003). AQNM is discussed further in § 2.

The remainder of the paper in presented as follows. In §2 the governing equations,
the normal mode decomposition and wave theory are reviewed and the modal
decomposition is introduced. The numerical methodologies are presented in more
detail in §3. In §4, three rotation regimes are identified, showing a non-monotonic
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tendency of the dynamics and vorticity asymmetry as Ro decreases. A general
dynamical picture of decaying turbulent flows for moderate to small Ro in bounded
domains is discussed and summarized. Conclusions are given in § 5.

2. Equations and rotating turbulence theories
In a rotating frame of reference, the incompressible momentum equations are
ou
o

where 2 =27 is the rotation vector, the velocity is u = (u, v, w) and p includes the
pressure term of the inertial frame, the centrifugal term and other contributions from
conservative forces. The usual viscous term corresponds to p =1 in the hyperviscosity
d,(u)=(—1)""v,(—=V?)? u. Without loss of generality, the rotation axis has been
chosen to be the vertical. For the non-dimensionalization we use (2£2)~!, L and U as
characteristic time, length and velocity, respectively. The non-dimensional equations
become

+ (- Vu+22zxu=-Vp +d,(u), Veu=0, (2.1)

9
a—l:—l-Ro u-Vu+2xu=-Vp+D,u), Veu=0, (2.2)

where Ro is the Rossby number. As Ro— 0, (2.2) evolves on both a slow vortical
time scale 7y=Ro t and a fast wave time scale 7o=¢, where ¢t is the non-
dimensional time. A two-time-scale asymptotic expansion can be performed. The
leading-order contribution has inertial wave solutions of non-dimensional frequencies
wy, (k) =sxz2 *k/|k| = sgk,/ k = sx cos(6x), where s = +1 and 6y is the angle between the
axis of rotation (here z) and the Fourier-space wavevector k. In the following w;, (k)
is also referred to as w,,. The associated normal modes, also called helical modes

(Waleffe 1993), are
72xk k . xk
e - i 2.
N <|2><kx|k|+ls"|2xk>’ (2.3)

where i = —1 and N*(k) are the eigenmodes of the curl operator obtained by solving
ik x n(k) = An(k). 2.4)

The solutions for / are + |k| and —|k|, which give the eigenvectors N* and N~ for
n. Using these solutions in (2.2) gives us the expression for the eigenmodes associated
with the linear rotation operator. They are called inertial waves (Greenspan 1968)
and are given by

N (k) exp(iwy, (k)t), (2.5)

where N*t(k) is the complex conjugate of N (k) (e.g. Cambon & Jacquin 1989;
Waleffe 1992, 1993). The velocity field in Fourier-space can therefore be written

u(k, 0, 71) = »_ Ay (k, 1) N*(k)exp (ioy, o). (2.6)
sp=%
Note that even if a time-scale separation analysis is used here (3, — 9., + Rod, ), low-
frequency waves are still present in the system. The analysis gives an equation for the
slow evolution of the amplitudes Aj, :

Wy, +o;, o5, =0

0 Ak 1)) = —7 Y ChrAL(p.T) Ay (g. T). (2.7)

k=p+q
sp.sq
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Cipe’ are the interaction coefficients shown by Waleffe (1992) to have the form

Coor™ = (spp — 549) (N x N*) - N* %, (2.8)

where the star stands for the complex conjugate. The only interacting triads that have

a significant contribution on the slow time scale 7; in (2.7) are those that satisfy the
resonance condition

w, (k) + w5, (p) + @y, (q) = 0. (2.9)
In other words, those satisfying

_ k. p, q,

k=p-+gq and Sk|k| sp|p‘ +sq|q|. (2.10)
The frequencies of the inertial waves vary from 0 to 2§2. The zero-frequency modes
belong to the two-dimensional Fourier-space plane defined by k, =0, corresponding
to the vertically averaged real-space velocity field. In the rotating-stratified case,
the linear operator has two inertia—gravity wave eigenmodes and a third distinct
vortical quasi-geostrophic normal mode with zero frequency. Unlike that case, the
zero-frequency mode of the present problem with rotation only is not a third normal
mode of the linear operator. It is only derived from the wave modes for the particular
value of k,=0. In that sense, it is analogous to the stratified shear modes, found
on the one-dimensional k,-axis in Fourier-space. In the problem with rotation alone,
however, the zero-frequency modes describe a two-dimensional Fourier-space plane
(defined by k, =0). As these modes form the slowly varying components of the flow,
we refer to them as vortical. We introduce the following notation:t

if k € Vi = {klk # 0 and k, = 0} then u(k) = uyp(k;) + w(ky) Z, 2.11)
if k € Wy = {klk # 0 and k, # 0} then u(k) = usp(k). :

We can also decompose the total energy £ = % >4 lu(k)|? into three contributionsy
E=Ep+E,+ Esp, (2.12)
with

Eap =3 Y @, Eo=3 Y kP Ep=y 3 k®P  (13)

keVy keVy kewy

along with their corresponding spectra. The latter are governed by

oE ~

B:D (k€ Wi, t) =(Ts_33 + T3-3 + Ts_3,)(k € Wi, t) — D, 3p(k € Wy, 1),
0E -

5 Uk € Vie 1) = (T + Trss)(k € Vieot) = Dy ap(k € Vi 1), (214)
JE, -

Y, (k S ka t) = (Tw72w + Tw733)(k € Vka t) - Dp,w(k S ka t)

with T being the Fourier-space energy transfer and lN),,,zD or 3D or w the two-
dimensional, three-dimensional or vertically averaged w spectral dissipation terms,
respectively. Transfers are distinguished by the types of interactions, e.g. 2-33 stands
for the interactions between two three-dimensional wave modes that contribute to

+ An analogous semi-axisymmetric decomposition was introduced by Cambon & Jacquin (1989)
in terms of energy, polarization and helicity, denoted e(k, cosf), Z(k,cos6) and h(k,cosf),
respectively.

I Esp, Eyp and E,, correspond to e(k, cos® # 0), (¢ — Z)|coso=0 and (e + Z)|coso =0, respectively.
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the two-dimensional equation. Note that the 7;-;; terms are symmetric in j and k.
Only a subset of three-dimensional wavenumbers can satisfy the resonance condition
in the 3-33, 3-32 and 3-3w interactions, but from (2.8) it follows that 3-32 and
3-3w resonant triads do not transfer energy to the two-dimensional and w modes,
respectively (Waleffe 1993). They are therefore said to be ‘catalytic’ for interactions
between the two wave modes of the same frequency. This last property is a key
point in asymptotic decoupling theories. In the Ro — 0 limit, it is thought that only
resonant interactions make a significant contribution to the slow dynamics. Therefore,
the asymptotic energy equations in this limit are

JdIFE ~

B;D (k S Wks t) = T3_33,res + T3_32,res + T3_3w.res - D[),?)Dv
JoE o

BtzD (k€ Vi,t) =Ty 20— Dpap, (2.15)
o0E,

ot (k € Vk’ t) = Tw,2w - Dp.wa
where the subscript {i-jk,res} stands for resonant i-jk interactions (2.10). The
time and wavenumber dependence in (2.15) has been omitted. The 2-22 and w-2w
interactions are trivially resonant, since all modes involved have zero frequency. It
appears from (2.15) that the equation for E,p is decoupled from the E;p equation
and is also identical to that governing two-dimensional turbulence. The equation for
E, is also decoupled from that of E;p and takes the form of that of a passive
tracer advected by the two-dimensional velocity field u,p. On the other hand, the
E5p equation is not decoupled since the three-dimensional energy interactions remain
affected by the k, =0 dynamics through the set of catalytic resonant triads 3-32 and
3-3w.

Waleffe (1993) and Cambon et al.(1997) found that the 3-33 resonant subset plays
an important role in the quasi-two-dimensionalization of the flow. According to their
argument, these interactions transfer the E;p energy preferentially in an angular sense
to close to, but not exactly, zero-frequency waves. Based on the greater complexity
of the resonant subset of 3-33 interactions compared to that of 3-23, it has been
argued by Babin, Mahalov & Nicolaenko (1996, 1998) that flow in the Ro — 0 limit
would display not only the E,p decoupled dynamics, but an infinity of approximate
adiabatic invariants corresponding to a decoupling of each constant k, Fourier-space
surface. Such a result implies a freezing of vertical transfer in the strong-rotation
limit.

In Bellet et al. (2006), the AQNM model is intended to specifically capture only
the resonant interactions and thus only the asymptotic regime. The equations used
in AQNM are those of an unbounded domain in real space, corresponding to a
continuous distribution of wavevectors in Fourier-space. A correspondence with the
equations presented here is nevertheless perhaps possible. In fact, in Bellet et al. (2006)
the resonance condition is not applicable in the vicinity of the k, =0 Fourier-plane.
Two-dimensional and w modes introduced in (2.11) are therefore excluded from the
AQNM model. Thus, AQNM is equivalent to a modified (2.15), in which only the
three-dimensional modes are retained, i.e equivalent to

0E3p
ot

where both T5_3;,.s and T5_3, s terms are removed and the viscosity term is omitted
for brevity. Given that the aim of this paper is to focus on two-dimensional-three-
dimensional interactions at finite Rossby number and that there are no strictly

(k€ Wi, t) = T;5 33 re5(k € Wi, t), (2.16)
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resonant interactions capable of such transfer, we necessarily restrict ourselves to a
regime where non-resonant interactions are still present. In addition, given that the
redistribution of wave energy via the catalytic two-dimensional-three-dimensional
resonant-interaction term in the E;p equation is also of interest, we are forced to
conclude that there is limited scope in comparing our results with AQNM-type
studies.

3. Numerical method and Rossby number

Equations (2.2) are solved numerically using a direct (de-aliased) pseudo-spectral
method. The integration domain is triply periodic of length 2n. We use leapfrog time
differencing and the Asselin—Robert filter in order to control the computational mode
(e.g. Asselin 1972). The filter factor was set to be 10~2. Owing to the anisotropy of the
problem we used cylindrical truncation for all our simulations, i.e. k;, |k.| < k, =N/3,
where N3 is the number of spatial collocation points (referred to as resolution) and

ky=y/k?+k? is the horizontal wavenumber. The ‘two-thirds rule’ was chosen in

order to filter the aliasing of the misrepresented wavenumbers introduced by the
computation of the nonlinear terms (Boyd 1989). We used a hypervisosity D ,(u) in
(2.2), with p=4 in order to obtain higher effective Reynolds numbers (e.g. Bartello
et al. 1994).

Our strategy has been to decompose the fields into waves (k, # 0), two-dimensional
and w components as in (2.11) and (2.14).

The Rossby number is the dimensionless measure of the relative size of the rotation
and the advection terms. It can be defined as Ro=U/22L, where U and L are
characteristic length and velocity scales, respectively. Jacquin et al. (1990) gave
experimental evidence of two relevant Rossby numbers: a macro-Rossby number,
Ro,4cr0, based on a large length scale (e.g. an integral length scale L) and a micro-
Rossby, R,.;-0, based on a smaller length scale (a Taylor microscale 4). They observed
two distinct and successive transitions at Roueo =~ 1 and Ropie, = 1. In the reminder
of this paper, the following definition of Ro is used:

Ron =/ [02]/(292), (3.1)

with [.] the spatial average and w, the vertical vorticity component. Because of
the use of the vorticity in (3.1), this definition would correspond to the micro-
Rossby number in Jacquin et al. (1990) and Cambon et al. (1997) for close-to-
isotropy three-dimensional flows. For this latter flow configuration another definition,
Roy=U/282L, with L based on the energy-containing large scales, would also
be relevant. Roy would correspond to the Ro,..0 in Jacquin et al. (1990). For
comparison, we computed both Roy and Ro,. Both values are displayed in table 1,
thereby testing the sensitivity of the results to the use of either definition. Unless
noted otherwise (3.1) is used to compute the Rossby number and it is denoted Ro in
the remainder of the paper.

4. Decaying rotating turbulence simulations
4.1. Non-monotonic tendency as Ro— 0 and its robustness to the change
of the size of the domain

A set of simulations were initialized with fully developed isotropic decaying turbulent
fields generated in domains of different sizes. Different rotation rates were then
imposed on the resulting fields (table 1).
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Ro Roys Roy Atyo0 Aty Ro Roys Roy; Atioo Atxo
0.01 0.008  0.008 5.6x107*  8.55x107° 0.172 0.14 0.14 dy d,
0.015 0.012 0.012 8.4x1074 1.28x1074 0.189 0.16 0.15 di d,
0.022 0.018 0.018 1.26x107%  1.92x10~* 0.20 0.17 0.16 di d,
0.034 0.028 0.0275 1.9%x1073 291x10~* 0.23 0.19 0.191 d; d,
0.05 0.042 0.04 2.8x107%  4.28x107* 0.28 0.24 0.23 d; d,
0.060 0.05 0.049 3.39x107*  5.18x10~* 0.3 0.25 0.25 d; d,
0.066 0.056  0.054 3.7x1073 5.65x10~* 0.47 0.41 0.4 d; d;
0.073 0.061 0.059 4.1x1073 6.25x10~* 0.6 0.52 0.5 d; d,
0.08 0.067  0.065 45%x1073 6.84x10~* 0.75 0.65 0.63 d; d;
0.088 0.074  0.072 494x1073  7.53x10~* 0.95 0.82 0.8 d; d,
0.097 0.082  0.079 5.44x107%  8.29x10~* 1.2 1 1.01 d; d
0.107 0.091 0.088 d; 9.15x10~* 1.5 1.29 1.26 d; d,
0.117 0.1 0.096 d; 9.85x10~* 3 2.59 2.5 d; d
0.13  0.11 0.11 di d> 10 8.7 8.4 dy d,
0.142 0.12 0.12 d; d, 100 86.3 84.2 d; d,

TaBLE 1. Time steps for the simulations in domains L and S, for each initial Ro, with
di = 5.84 x 1073 and d» =9.87 x 10~*. The micro-Rossby number is referred to as Ro. The
macro-Rossby numbers are denoted Roys and Roy . for the S and L domains, respectively. We
introduce rotation on fully developed turbulence with total energies Es =0.234 and E; =2.254.
Hyperviscosity coefficients are vg g =2.602 x 107! and vy ; =2.927 x 107", The initial eddy
turnover time scales were tg =0.1038 and 7, =0.01189.

We choose to present results of the simulations obtained from grids of resolutions
100° and 2003. For the small-domain simulation (S) (resolution 100°) the preliminary
non-rotating simulation is initialized with an isotropic Gaussian spectrum centred
around k; s =6.4, with width og=1.6 and total energy Es=0.41. The truncation
wavenumber is k; s = 32. The set-up for the large domain (resolution 200%) (L) (twice
as as large as S) leads to k; ; = 66 and a rescaled spectrum using a stretching coefficient
of y =k, /k. s giving k; ; =13.2, 0, =3.3 and E; =3.59. Initial non-rotating spectra
of total energy E are displayed for both simulations in figure 1(a).

We chose the two domains and rescaling described above in order to study the
sensitivity of the results to a change in the size of the computational domain, rather
than a change of resolution (implemented by both a change of resolution and a
rescaling argument of the initial fields). This also indirectly allows us to check both
the influence of the angular resolution of the discrete domain, and the adequacy of
sampling of near-resonant interactions that are linked to the size of the domain.

These preliminary non-rotating simulations were run until the enstrophy maximum
was reached (after about 10 large-scale turnover times). The non-rotating fully
developed turbulent energy spectra obtained at the end of the preliminary runs
are compared in figure 1(b). The collapse outside the dissipation range is still good.
A horizontal (x, y) slice of the vertical vorticity field w, in the large computational
domain is displayed in figure 2.

At this point, different rotation rates are applied to the isotropic fully developed
turbulence. Parameters such as initial energies, hyperviscosity coefficients and eddy
turnover time scales at the end of the preliminary non-rotating simulation are given in
table 1. High rotation rates require very long calculations due to time-step limitations
imposed by the explicit treatment of the Coriolis term. The initial Ro and associated
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FIGURE 1. Total energy spectra for preliminary non-rotating simulations. (a) Spectra of Eg
and E; used to initiate the preliminary run and (b) corresponding final spectra of the flow
used to initiate the rotating simulations. We present results of the large and small boxes, with
ys=1 and y; =2.062.
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FIGURE 2. Horizontal slice (x, y) of the vorticity field w, at the end of the isotropic simulation.
The field is used to initialize the subsequent rotating simulations of the large computational
domain.

time steps are also given in table 1. The equivalent large-scale-based Roy, for each of
the simulations in domains L and S is given in table 1.

Figure 3 displays the normalized energy time series of two-dimensional and three-
dimensional modes as a function of non-dimensional time for the large-box runs.
The curves for the small box are similar and are therefore not shown here. Time has
been non-dimensionalized using the initial eddy turnover time scales (table 1). The
preliminary non-rotating run shows little vortical energy compared to wave energy,
as expected for an isotropic system where the decomposition has no meaning. At the
end of this preliminary run, different rotation rates were applied (table 1). We observe
three types of behaviour. First, large-Ro simulations display a time evolution similar
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FiGURE 3. Time series of normalized E,;p and Ezp as a function of the non-dimensional time
t/t, where the eddy turnover time scale for the initial non-rotating run is 7., =0.032 and the
initial eddy turnover time scale for the rotating runs is T =0.012. (@) The initial non-rotating
run, (b) Ro=100, (c) Ro=0.2 and (d) Ro=0.01. All these results were obtained with the large
computational box size.

to that of isotropic simulations, where both two-dimensional and three-dimensional
energies have the same decay rate (e.g. Ro=100). As rotation increases, we observe
a transition to a second regime of slow total energy decay. We call this regime the
intermediate-Ro range or regime. It is characterized by a growth of E,p with time,
while the wave energy decay is reduced. The E,p growth rate reaches a maximum for
Ro~0.2. We therefore chose to display this particular Ro as an example. Throughout
this paper, our discussion of the Ro ~ 0.2 simulation applies qualitatively to all
intermediate-Ro range simulations. Around ¢/t =~ 300 vortical and wave energy
curves cross in figure 3(c). After that time, most of the energy is two-dimensional.
This increase of two-dimensional energy implies a transfer from three-dimensional
modes. This is an important characteristic of the intermediate-Ro range. Finally, more
rapidly rotating simulations do not display this wave—vortex energy transfer. In fact,
the time series show an expected slower decay rate of wave energy, Esp, at Ro=0.01,
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FIGURE 4. Time series for the large-box simulations of the wave energy (a), the vortical energy
(b) and the volume mean square of w, E, (c) (2.14) for Ro=100, 0.95, 0.2, 0.025 and 0.01.
Qualitatively similar results were obtained for the small box.
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FIGURE 5. Time series for the large-box simulations of the total three-dimensional enstrophy
V (a), the two-dimensional enstrophy V>p (b) and V,, (c), for Ro=100, 0.95, 0.2, 0.025 and
0.01 (line styles as in figure 4). Similar results were obtained for the small box.

but only a slight dissipation of E,p, consistent with a negligible transfer between
Vi and W, modes. Recall that energy does not decay in two-dimensional turbulence
in the limit Re — oco. We refer to this third Ro range as the small-Ro regime. Its
characteristic is the apparent decoupling of wave and vortex modes that seems to be
in agreement with the first-order resonant theories introduced in §2.

We observe an overall reduction of both total energy and enstrophy decay with
rotation. This is consistent with the expected reduction of the energy cascade in
rotating turbulence due to phase scrambling. Thus, high values of enstrophy and
energy are observed for a longer period of time as Ro decreases. We have already
observed that a range of rotation rates, referred to as the intermediate range, is
characterized by an increase of vortical energy and therefore a strong interaction
between wave and vortical modes. Both enstrophy and energy are decomposed
following (2.11). We display the resulting time series in figures 4 and 5.
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Figure 4 displays the large-box time series of Ezp, E,p and E,. Figure 5 displays
the large-domain-size time series of three-dimensional enstrophy given by

1 2
Vip =5 > lelk)P, (4.1)
keWw;
w enstrophy V,, given by
1 2
V=3 len®)P, (42)
keVy
and the two-dimensional enstrophy V,p given by
1
Vap =35> le: (k). (43)
keVy

In these equations @ is the total vorticity field, @, =w,x +w,y is its horizontal
component and w, its vertical component.

Outside the intermediate-Ro range the total energy is dominated by wave energy,
Es;p. The intermediate-Ro simulations show an increase of E,p with time. The
maximum growth rate is reached for Ro=~0.2 (figure 4). Meanwhile, the enstrophy
Vop shows a maximum growth for the same Ro (figure 5). For all Ro E, decreases
with time, i.e. the transfer of energy from modes in W, to modes in V; does not extend
to the w mode in the intermediate range. We note from the Ro =0.2 curves in figures 4
and 5 that the rate of decay of E, and V,, increases when E,p and V,p are large. In
fact, if we exclude Ro =100 from this analysis, the Ro =0.2 decay rate of E,, and V,,
is the highest in the intermediate- and small-Ro ranges. This is in agreement with the
asymptotic equation (2.15) governing E,, i.e. a decaying passive scalar advected by
the two-dimensional flow. On the other hand, the intermediate-Ro range is obviously
not described by the decoupled equations (2.15), and so no further comparisons can
be made. Concerning the small-Ro range, E,p~const and Vop ~ 7062, With all
necessary caution, it is interesting to note that this decay rate is consistent with recent
observed decaying two-dimensional turbulence results.

In order to solidify the observed separation of regimes with Ro and the non-
monotonic tendency to reach the Ro— 0 limit, we consider the integrated energy
transfer between one mode in V; and two modes in W;. The integration of (2.14) over
wavevectors gives

0E ~
8t3D =—(T 23+ T w3)—D,sp,
E ~
3% =93 —D,p, (4.4)
JoE, ~
= yw —D ws
ot 3 b

where

T 3(t;Ro) = /T233(k € Vi, t; Ro) &’k = —/T323(k € Wy, t; Ro) d°k,
(4.5)
T w3(t; Ro) = /Tw_33(k € Vi, t:Ro) &’k = —/T3_3w(k € Wi, t; Ro) d°k.

Because of high-frequency waves in rapidly rotating simulations, rapidly fluctuating
time series of the integrated energy transfer (4.5) are obtained. We therefore averaged
the instantaneous transfer over small intervals of time (table 2). The difficulty in
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Ro T:s Trs T, Ty Intervals

001 3 633 047 1.01 I(s 1
0.2 3 7.05 048 1.10 I(,
100 288 &1 047 127 I(
0.01 473 855 0.75 135 I(s
0.2 5 10.14 0.75 1.35 I(s
100 513 1425 08 216 I(f
001 71 1141 112 18 I(f
0.2 8 146 125 223 I(IS
100 99 272 152 401 I(S
001 105 155 1.65 243 I(S
02 132 2164 201 33 Is
100 2222 584 33 85 1@4

TaBLE 2. Calculated time intervals for each resolution and Ro such that: I;s\1, I s 2,1 3)3 and
I(s)4 start at the 10th, 20th, 35th and 50th eddy-turnover time for both the small and the large
box, S and L respectively. All intervals are about N, ;, ~ 20 eddy-turnover times in length.

choosing the right way to average such quantities temporally is first due to our choice
not to force the dynamics. Second, a wide range of rotation rates were investigated,
implying a large diversity in the dynamical time scales of the turbulence. Finally, we
aim to study the influence of the domain size on the turbulence. All these factors lead
to the need for careful consideration of the best choice of time intervals on which to
average in order to ensure a comparison of results that are dynamically consistent.
In order to estimate the dynamical time scale for each rotation rate and resolution,
we used a different definition of the eddy turnover time that has proven useful in
decaying simulations. Following Bartello & Warn (1996)

i
Nt,',ff - / V(t/)l/z dt/, (4.6)
4

where N, ,, is the number of eddy turnover times, V=1 [ [ [ |@|*dv is the enstrophy
and ¢, t; are initial and final times of integration, respectively. The selected time
averaging protocol uses N as our measure of the dynamical time for each Ro and
for each of the grids. Starting from that point we constructed several time intervals
of approximately 20 eddy turnover times (calculated using N, ;, and given in table 2
for three Ro as examples). We integrated 7 5;3(¢; Ro) on each of these intervals. The
transfers

Tx(Ro) = /1(5)

T (t; Ro) dt = / / T, ;3(k € Vi, t;Ro) &k dr (4.7)
L 1
are shown in figure 6 for time intervals i = 1, 2, 3 and 4 as a function of Ro. Ro — o
was replaced by Ro=10? to fit in figure 6. Linear and logarithmically spaced time
intervals gave similar results. Nevertheless, the intervals described above and used in
figure 6 allow a better comparison between the small and large domains.

The result is a systematic peak of T»; centred around the same Rossby numbers
for both computational domains. In addition, the Rossby number of maximum
two-dimensional-three-dimensional transfer shows the same systematic translation to
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FIGURE 6. Integrated transfer spectra T3 using four time intervals of about 20 eddy turnover
times (4.6). We start the time intervals I(f)l’ I(i)2, I(f)3 and I(f)’ 4 at about 10, 21, 34 and 50

eddy turnover time scales, respectively. The small (S) domain is presented in (a) and the large
domain (L) in (b).

lower Ro with time for both domain sizes. This translation is due to the decrease of
Ro with time in all of our decaying simulations. We conclude that the shape of the
curves is robust.

In figure 6, we display the integrated transfer 7T»>; as a function of the Ro defined
in (3.1). Table 1 gives the equivalent macro-Ro for each domain size. From table 1
we can check that doubling the size of the computational domain did not change
the values of the macro-Ro. We conclude that the use of either (3.1) or the macro-Ro
definition does not affect the shape of the curves given in figure 6. In other words,
both the small and the large box T»;(Ro) curves peak around the same value of Ro
and evolve similarly regardless of which of our two definitions of Ro is used. The
peaks are at Ro~0.2, Roys~0.17 and Roy; ~0.16, where Roys and Roy, are the
macro-Ro of the small and large domains, respectively.

For rotations weaker than Ro = 1, energy transfers are similar to the non-rotating
two-dimensional-three-dimensional transfer, where such a decomposition is irrelevant.
In fact, it is due to a balance of energy transfer from two-dimensional to three-
dimensional modes with that from three-dimensional to two-dimensional modes. Both
grids show this large-Ro behaviour, at all times. One might expect these turbulent
statistics to be monotonic with rotation but figure 6 shows that this is clearly not the
case. In fact, the peak of energy transfer is reached around Ro ~ 0.2 at early times and
is robust to the change of domain size. The sign of this transfer is positive, implying
an energy flow from wave to vortical energy. This intermediate range is observable
between Ro~0.03 and Ro ~ 1. We refer to the third region, for which Ro is less than
approximately 0.03, as the small-Ro range. In this last regime, the integrated transfer
T»; between waves and vortices is considerably reduced. The increase of the numerical
box size reduces the variability on the low-Ro side. The amplitude of the Ty; peak for
the small box decreases faster than that of the large box. This is probably due to the
differing dissipation ranges. The low-Ro wing of the peak seems to be time invariant,
unlike the high-Ro wing. Again, this property is independent of domain size. Because
of the similar behaviour in both domain sizes, we conclude that the peak’s centre
is not shifted by a change of the numerical sampling of near-resonant interactions
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FIGURe 7. Histogram of the three components of the vorticity vector for different Ro at
the final time of the simulation Ty. (a) The vertical vorticity component «, and (b) (x,y)
components w, . The histograms are shown for the small box. The strongest skewness of the

intermediate zone is observed for Ro=0.2.
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FIGURE 8. (a) Skewness of the vorticity component S(w,) as a function of Ro in the large-box
simulation, at 7 times (seven). The largest skewness is observed at the last output time,
tmax large = 8.5. (b) The value of S(w;) at the end of the simulations are displayed with Ro, for

both the small and large boxes, respectively (i.e. at times fyax smant =27 and tyax jarge = 8.5).

nor by the change in sampling of discrete Fourier modes and the subsequent angular

resolution in k.
4.2. Skewness

The skewness of the vertical component of the vorticity S(w,) shows a maximum
growth in the intermediate-Ro range for both domain sizes (the histogram for the
small-box run is shown in figure 7(a)). Horizontal components of vorticity never
show this asymmetry, independently of Ro and the size of the computational box
(figure 7(b)). The growth of the skewness with time in figure 8(a) is particularly strong
for the intermediate-Ro zone. We observe that its maximum is reached toward the
end of the simulations. The maximum skewness value occurs for Ro =~ 0.2. These last
two results are observable in figure 8(a) for the large box. We then compare the
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S(w,)= f(Ro) curves for both domain sizes. We chose to display S;,..i(@.)(tmax; RO)
and Sigrge(®;)(tnax; Ro) in figure 8(b), where t,,, is the time at which S(w,) is a
maximum, which occurs at the end of the simulation. Both curves displayed in
figure 8(b) show a maximum skewness for Ro ~0.2. This strong asymmetry in favour
of cyclonic vortices coincides with a strong energy transfer from waves to two-
dimensional modes. Finally, the left wing of the histogram in figure 7 seems Gaussian,
which might suggest a reduction of energy transfer for anticyclonic vorticity, as noted
by Bartello et al.(1994).

Real-space horizontal slices (x, y) of the two-dimensional vertical vorticity field
w,>p and vertical slices (y, z) of the total vertical vorticity field w, are shown in
figure 9 for Ro =100, 0.2 and 0.01. A strongest skewness is observed in the horizontal
slices of the two-dimensional vertical vorticity field for Ro=0.2, in which the highest
value of vorticity is 100, while the lowest value is —40. This suggests that a transfer
of energy from three dimensions is either preferentially toward cyclonic vortices or
that a destabilization of the anticyclones occurs as they are formed (or fed energy).
This instability may be similar to that observed in channel or free shear rotating flows
mentioned in § 1. The Ro=0.2 vertical slice of w, is dominated by w, >p. On the other
hand, Ro=100 and 0.01 vertical slices are dominated by the the three-dimensional
wave vorticity. At Ro =0.01 a slight asymmetry in the cyclone/anticyclone distribution
persists, but the intensity of the vortices, from — 10 to 15, is weaker than that observed
in the two-dimensional horizontal field at Ro=0.2. Finally, the simulations of the
weak rotation regime with Ro =100 are similar to those observed for isotropic non-
rotating flows: no significant asymmetry is seen, the intensity of the vortices is reduced
with time and no anisotropy is noted.

In the present section we identified three distinct rotation ranges. Among these,
the intermediate-Ro range is characterized by a strong three-dimensional to two-
dimensional transfer. We illustrated that our main result was robust to the doubling
of the domain size, thus confirming the adequate sampling of near-resonances.
Moreover, we showed that the maximum three-dimensional to two-dimensional
transfer is associated with the maximum vertical vorticity skewness, both reached
in the intermediate-Ro range for Ro=0.2. This is also robust to the change of
computational domain size. We examine the three rotating regimes further in the
following section §4.3.

4.3. Large-, intermediate- and small-Ro regimes

In figure 10 we display horizontal energy spectra of E,p, E, and E3p and vertical
spectra of three-dimensional energy, E;p, for three characteristic Ro values. The
vertical spectra E;p(k,) displayed for all Ro were offset for clarity. Spectra are
averaged over two time intervals ¢ € [1, 2] and ¢ € [7, 10] of the large-box simulations.
As in figure 3, the three values of Ro chosen are 100, 0.2 and 0.01. Figure 11 shows
the energy transfer spectra for the simulation in the intermediate range only. The
displayed quantities were introduced in (2.14). For consistency, we used the same
time-averaging intervals as those used in figure 10. The transfers shown in the left-
hand column are averaged at an early stage of the simulation, namely ¢ € [1, 2]. The
right-hand column shows transfers that were averaged later in the simulation on
t €7, 10]. Panel (a) displays both T, »(k;) and T» 33(k;,) spectra as they appear in the
E>p(ky, t) equation (2.14). Panel (b) shows horizontal transfer spectra that appear in
the Esp(ky, t) equation (2.14). The T»_33(ky, t) curves have been added to these graphs
for comparison purposes. Finally, panel (c) shows the vertical energy transfer spectra
of equation (2.14) for E;p(k., t).
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FIGURE 9. Horizontal slices (x, y) of the two-dimensional vertical vorticity field w,,p (left
column) and vertical slices (y, z) (right column) of the total vertical vorticity field w, for (a)
Ro =100, (b) Ro=0.2 and (c) Ro=0.01. The snapshots are taken at t =8.5 and from the
large-domain simulations.
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FiGUure 10. The large-box simulations’ horizontal spectra of E,p, E;3p and E, averaged on
Iy =1[1,2] and I,=[7,10] time intervals. The spectra averaged on I; have been translated
upward for clarity. Vertical spectra are displayed for each of (a¢) Ro=0.01, (b) 0.2, (¢) 100
simulations and have been rescaled for clarity. (d) The vertical spectra of E;p averaged on [;
and I are also shown. The small box spectra are similar and are therefore not shown.

From the vertical spectra Esp(k,) of figure 10, we can see that the vertical transfers
are weaker overall than the horizontal for the three Ro and for all times.

The horizontal spectra in figures 10 and 11 of the intermediate-Ro regime show
an increase of the two-dimensional energy spectra around k, =10 early in the
simulations. This maximum is due to a preferential transfer from wave modes
k, ~20 to vortical modes kj, ~ 10. Later, these interactions involve a wider range
of horizontal wavenumbers. However, the vortical modes that are involved in the
injection of two-dimensional energy by the three-dimensional modes remain relatively
localized around k, = 10. Later in the simulation, the E,p energy spectrum averaged
on t € [7, 10] shows a migration of its maximum toward larger horizontal scales and
a slope Exp(k,)/E ~ k;>1. This is due to the triple-vortex interactions (see T (k)
transferring the two-dimensional energy from the injection wavenumber k;, ~ 10 to
larger horizontal scales (figure 11a). Later we still observe this upscale transfer of
vortical energy in the 75 p(k;) spectrum (figure 11a, right).
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Over the Ro=0.2 simulation, the E3p is transferred to small horizontal scales via
3-33 and 3-2(w)3 interactions. The associated spectrum gives E;p(k;)/E ~k;*. The
decrease of three-dimensional energy with time in favour of the increase of two-
dimensional energy leads to a dominant contribution of the 73 5,3 with time. These
3-2(w)3 interactions appear to transfer E;p downscale horizontally, but vertically
upscale and toward the two-dimensional modes. Unlike the horizontal scale, there is
no preferential vertical scale from which energy is extracted to be injected in the k, =0
modes. The overall amplitudes of the 3-33 vertical transfers (75_33(k,)) become smaller
than those of the 3-2(w)3 (73 »u)3(k.)) with time. This explains the overall flatness of
the vertical spectra E3p(k,). From both energy and transfer spectra in the intermediate
range we conclude that the 3-2(w)3 interactions play the main role in the transfer of
three-dimensional energy to dissipation. This transfer is stronger in the horizontal.
They also extract three-dimensional energy from all vertical wave scales but from a
range of preferred horizontal scales. This extracted energy is preferentially injected in
horizontal two-dimensional scales k; =~ 10. In figure 11, the Ro=0.2 energy transfer
spectra of E, (k) display a downscale cascade to dissipation scales (not shown). Thus,
E,, is systematically dissipated, as observed in figures 4 and 5.

For Ro=0.01, we do not observe a maximum for E,p(k;) early in the simulation but
a maximum of the two-dimensional energy spectrum is noticeable for the second time
interval 7 € [7, 10] at low wavenumbers. This suggests a migration of two-dimensional
energy to larger horizontal scales, but the behaviour is distinct from that observed at
Ro=0.2. In fact, the E5p(k,) spectrum shows a decrease of energy in time for low
k, and a very steep slope between kj, ~20 and the dissipation range. A comparison
of the final values of the E,p(k;,) spectra show that more two-dimensional energy is
contained in large horizontal scales for Ro~ 0.2 than for Ro~0.01, thus underlining
again the distinction between the small- and the intermediate-Ro regimes. The latter
shows a stronger two-dimensional upscale energy transfer.

For reference purposes, we provide the large-Ro-regime spectra for Ro=100.
In fact, no increase of two-dimensional energy is observed with time for any
particular wavenumber, nor is there a sign of two-dimensional energy cascade toward
small kj,.

Finally, note that low-rotation-rate simulations have been examined in previous
studies and their characteristics are similar to those of isotropic turbulence. We
therefore chose not to include them in the spectra discussion. Our examination of
transfer spectra of the small-Ro range, such as those at Ro=0.01, is very difficult
owing to the significant phase scrambling associated with such high-frequency waves.
Ensemble-averaged spectra are necessary to determine how two-dimensional-three-
dimensional catalytic resonant interactions compare to those of triple-wave resonant
interactions. We do not cover this additional work in the present paper since we chose
to focus on what we identified as the intermediate-Ro range.

4.4. Discussion of the intermediate regime

Coming back to the vertical transfers and spectra, the overall weakening of vertical
transfers observed in §4.3 is reminiscent of the vertical freezing of energy transfer
described by Babin et al.(1996) in the limit Ro — 0 (discussed in §2). Their result
is based on the assumption of decoupling in the form of vanishing wave—vortex
interactions. However, the Ro~0.2 and the intermediate-Ro range in general is
characterized by a maximum transfer of energy from wave to two-dimensional modes.
Therefore, these two dynamics are different. Moreover, the freezing of vertical energy
transfer in Babin et al.(1996) is based on their prediction of the dominance of catalytic
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resonant wave—vortex interactions over resonant triple-wave interactions in (2.15). It
is nevertheless interesting to notice that the intermediate-Ro range shows a dominance
of wave—vortex (3-2(w)3) energy transfer over the energy transfer due to triple-wave
(3-33) interactions, both horizontally and vertically. So, from this observation one
could apply a similar reasoning to that applied to resonant interactions by Babin
et al.(1996). This could explain the overall reduction of vertical energy transfers
compared to those in the horizontal in the intermediate-Ro range. This assumes that
3-2(w)3 transfers dominate 3-33 transfers.

The upscale energy transfer observed in the forced simulations of Smith & Waleffe
(1999) and the higher Ro examined by Chen et al.(2005) are consistent with the
energy transfer in the intermediate simulations range (e.g. Ro~0.2) of our decay
simulations. The growth of the mean energy-containing scale that is observed in §4.3
is weaker than that of the forced simulations of Smith & Waleffe (1999) and Chen
et al.(2005). This is possibly due to the lack of forcing. Moreover, we initialized our
rotating simulations with an isotropic spectrum not strongly peaked at a particular
wavenumber.

Based on our results in §4.1, the intermediate-Ro regime is also associated with a
strong vorticity asymmetry in favour of cyclones. This last characteristic is also in
agreement with Smith & Lee (2005) and shows that the results discussed in Smith &
Waleffe (1999), Chen et al.(2005) (the highest of the two Ro simulations) and Smith
& Lee (2005) all belong to the intermediate-Ro range that we identified above. This,
combined with §4.3, suggests that the lower of the two Ro simulations discussed
in Chen et al.(2005) belongs to the small-Ro range. The regime separation that we
observe should also be evident in forced simulations. Clearly, an investigation in that
configuration is needed.

5. Conclusions

We have examined the general picture of rotating turbulence for a large range of Ro
(32 values were used). We observe a non-monotonic tendency as Ro — 0. Moreover,
we identify three distinct rotation ranges: the large (Ro > 1), the intermediate
(0.03 < Ro < 1) and the small (Ro < 0.03). This identification is robust to a doubling
of the computational domain size and is therefore not due to poor sampling of the
key wave—vortex near-resonant interactions. It is also robust to whether a velocity-
or a vorticity-based Rossby number is employed. We show that the intermediate-Ro
range is characterized by a maximum leakage of energy from three-dimensional to
two-dimensional modes that is initially reached at Ro~0.2 for both domain sizes.
This transfer is associated with a maximum of vertical vorticity skewness, also reached
at Ro~0.2. This is also robust to the change of domain size. These results lead us to
a general picture of rotating turbulence.

It is interesting to note the analogy between the zero-frequency two-dimensional
modes in rotating turbulence and the zero-frequency vertically sheared horizontal
flow modes in stratified turbulence. Such an analogy has been mentioned by Smith &
Waleffe (2002) concerning the accumulation of zero-frequency energy in either rotating
or stratified cases. Moreover, Smith & Waleffe (2002) observed a pile-up of energy
in shear modes in their forced numerical simulations. In their forced simulations,
Waite & Bartello (2004) observed a similar significant increase of shear-mode energy
as the horizontal Froude number decreased down to a threshold value, followed by
a significant drop as stratification increased. This last non-monotonic tendency is
reminiscent of the non-monotonic behaviour of the intermediate-Ro range in our
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rotating decaying simulations. A more systematic study of the stratified case would
be necessary to push this analogy further.

The wave—vortex interactions responsible for the intermediate-Ro range
preferentially inject wave energy to intermediate-to-small horizontal zero-frequency
mode scales (k; = 10). They extract three-dimensional energy from all vertical wave
scales but preferentially from rather localized intermediate-to-small horizontal scales.
Most of the resulting two-dimensional energy is contained in cyclonic vortices of
medium horizontal scale. The contribution of triple-wave interactions to the three-
dimensional energy transfer is weaker in this regime. Triple-wave interactions have a
weaker contribution in vertical energy transfers that are mostly done by wave—vortex
interactions.

Finally, the intermediate- Ro range shows a stronger two-dimensional upscale energy
transfer than that observed in the small-Ro range. In fact, we could broadly say that
the two-dimensional turbulence of the intermediate-Ro range is forced by an injection
of energy from wave modes, thus a stronger growth of the two-dimensional energy-
containing scale is observed. On the other hand, the integrated transfer, energy spectra
and energy time series of the small-Ro range show a vanishing conversion of wave to
vortex energy. This is consistent with the vortical dynamics being quasi-independent
from the background wave turbulence, but a further computationally demanding
study of this last range is necessary for a more complete investigation of the theories
discussed in § 1.
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